

Sensitivity analysis for optimization under constraints and with uncertainties Kernel-based Sensitivity Analysis on (excursion) sets

Noé Fellmann Céline Helbert & Christophette Blanchet (ECL) Adrien Spagnol & Delphine Sinoquet (IFPEN)

École Centrale de Lyon & IFP Énergie nouvelles

Journées CIROQUO, 23-35 may 2023

3 / 23

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
●0000	000	0000	000000	O	00
From a con	nnlex system to	robust ontimizatio	n		

rom a complex system to robust optimization

$$\begin{array}{c} x \in \mathcal{X} \\ u \in \mathcal{U} \end{array} \xrightarrow{\qquad \qquad } \begin{array}{c} \mathsf{B} \mathsf{lack-box} \text{ functions } f \text{ and } g \end{array} \xrightarrow{\qquad \qquad } \begin{array}{c} f(x,u) \in \mathbb{R} \\ g(x,u) \in \mathbb{R}^m \end{array}$$

- The x are the deterministic inputs
- The u are uncertain inputs : $u = U(\omega)$ with U a random vector of density \mathbb{P}_U
- f is the objective function to minimize
- ullet g is the constraint function defining the constraint to respect : $g\leq 0$

Robust optimization problem

$$x^* = rgmin_{x \in \mathcal{X}} \mathbb{E}[f(x, U)] ext{ s.t. } \mathbb{P}[g(x, U) \leq 0] \geq P_{target}$$

How can Sensitivity Analysis be used to reduce the cost of a robust optimization ?

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
O●OOO	000	0000	000000	O	00
Robust Op	otimization and	sensitivity analysis			

Robust optimization problem...

$$x^* = rgmin_{x \in \mathcal{X}} \mathbb{E}[f(x, U)] ext{ s.t. } \mathbb{P}[g(x, U) \leq 0] \geq P_{target}$$

... seen without the U

$$x^* = \operatorname*{arg\,min}_{x \in \mathcal{X}} F(x) \, \operatorname{s.t.} \, G(x) \leq 0$$

- Goal Oriented Sensitivity Analysis to reduce the input dimension : Spagnol 2020
- Huge evaluation cost of F and G
- What about the U?

How to quantify the impact of the uncertain inputs U on the optimization ?

 \rightarrow SA on excursion sets : U $\stackrel{\phi}{\mapsto} \Gamma = \{x \in \mathcal{X}, g(x, U) \leq 0\}$

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
	000	0000	000000	O	00
A toy excu	rsion set				

Toy function from [El-Amri et al. 2021]

$$\begin{aligned} \forall (x, u) \in [-5, 5]^4 \ g(x, u) &= -x_1^2 + 5x_2 - u_1 + u_2^2 - 1 \\ \Gamma_u &= \{x \in [-5, 5]^2, g(x, u) \leq 0\} \end{aligned}$$

Choudo - Axe 5 Remei-based Sensitivity Analysis on (excursion) sets 25 may 2025 5/	Ciroquo - Axe 3	Kernel-based Sensitivity Analysis on (excursion) sets	25 may 2023	5 / 23
--	-----------------	---	-------------	--------

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
000●0	000	0000	000000	O	00
SA on excu	rsion sets				

Excursion sets

New output :

$$\Gamma_U = \{ x \in \mathcal{X}, g(x, U) \le 0 \}, \tag{1}$$

which is called a random excursion set.

Influence of the uncertain inputs U on Γ_U ? \Rightarrow SA on excursion sets.

Yet most SA techniques have scalar or vectorial outputs.

How then can we do sensitivity analysis on (excursion) sets?

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
0000●	000	0000	000000	O	00
Table of Co	ontents				

1 Kernel-based Sensitivity Analysis

- Distribution embedding into a RKHS
- From a distance between distributions to sensitivity indices

2 Kernel-based Sensitivity Analysis on sets

- A kernel between sets
- HSIC ANOVA indices on sets, Estimation

3 Numerical tests

- Toy excursion set
- Pollutant concentration maps

Introduction	Kernel-based SA ●○○	Kernel-based SA on sets 0000	Numerical tests	Outlook O	References 00
Table of C	ontents				

1 Kernel-based Sensitivity Analysis

- Distribution embedding into a RKHS
- From a distance between distributions to sensitivity indices

Kernel-based Sensitivity Analysis on sets

- A kernel between sets
- HSIC ANOVA indices on sets, Estimation

3 Numerical tests

- Toy excursion set
- Pollutant concentration maps

Figure - Kernel mean embedding

with k a (positive definite) kernel $k : (x, x') \in \mathcal{X}^2 \mapsto k(x, x') \in \mathbb{R}$.

Hilbert Schmidt Independence Criterion (HSIC), Gretton et al. 2006

With $K = k_{\mathcal{X}_i} \otimes k_{\mathcal{Y}}$, the HSIC is given by :

$$\mathsf{HSIC}_{\mathcal{K}}(X_i,Y) = ||\mu_{\mathcal{K}}(X_i,Y) - \mu_{k_{\mathcal{X}_i}}(X_i) \otimes \mu_{k_{\mathcal{Y}}}(Y)||^2_{\mathcal{H}_{\mathcal{K}}}$$

When K is characteristic (injectivity of the mean embedding),

 $HSIC_{\mathcal{K}}(X_i, Y) = 0$ iif $X_i \perp Y \rightarrow$ screening.

Ciroquo - Axe 3

Kernel-based Sensitivity Analysis on (excursion) sets

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	○○●	0000		O	00
HSIC-ANO	VA index [daV	eiga 2021]			

Assuming that the inputs are independent and that the input kernels are ANOVA,

$$\mathsf{HSIC}(\boldsymbol{X}, \boldsymbol{Y}) = \sum_{A \subseteq \{1, \dots, d\}} \sum_{B \subseteq A} (-1)^{|A| - |B|} \mathsf{HSIC}(\boldsymbol{X}_B, \boldsymbol{Y}).$$

HSIC-ANOVA indices are then defined as :

$$S_i^{\mathsf{HSIC}} := rac{\mathsf{HSIC}(X_i, Y)}{\mathsf{HSIC}(X, Y)},$$

$$S_{T_i}^{\mathsf{HSIC}} := 1 - rac{\mathsf{HSIC}(oldsymbol{X}_{-i},Y)}{\mathsf{HSIC}(oldsymbol{X},Y)}$$

and are suited for ranking (and screening).

Easy to estimate :

$$\begin{aligned} \mathsf{HSIC}_{k_{\mathcal{X}},k_{\mathcal{Y}}}(X,Y) &= \mathbb{E}[k_{\mathcal{X}}(X,X')k_{\mathcal{Y}}(Y,Y')] \\ &+ \mathbb{E}[k_{\mathcal{X}}(X,X')]\mathbb{E}[k_{\mathcal{Y}}(Y,Y')] \\ &- 2\mathbb{E}[\mathbb{E}[k_{\mathcal{X}}(X,X')|X]\mathbb{E}[k_{\mathcal{Y}}(Y,Y')|Y]]. \end{aligned}$$

• Only requirement : to have kernels on the inputs and on the output

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	●○○○	000000	O	00
Table of C	ontents				

1 Kernel-based Sensitivity Analysis

- Distribution embedding into a RKHS
- From a distance between distributions to sensitivity indices

2 Kernel-based Sensitivity Analysis on sets

- A kernel between sets
- HSIC ANOVA indices on sets, Estimation

3 Numerical tests

- Toy excursion set
- Pollutant concentration maps

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	○●○○	000000	O	00
SA on sets	: a kernel bet	ween sets			

With $A\Delta B = A \cup B - B \cap A$ and λ the Lebesgue measure, we define a kernel on the Lebesgue σ -algebra $\mathcal{B}(\mathcal{X})$ by :

$$\forall \Gamma_1, \Gamma_2 \in \mathcal{B}(\mathcal{X}), \ k_{set}(\Gamma_1, \Gamma_2) = \exp\left(-\frac{\lambda(\Gamma_1 \Delta \Gamma_2)}{2\sigma^2}\right).$$

Proposition (A kernel between sets)

kset is a kernel [Balança et Herbin 2012] and is characteristic.

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	○O●○	000000	O	00
<i>k_{set}</i> is cha	racteristic, sket	ch of proof			

- $\mathcal{B}(\mathcal{X}) \to \mathcal{B} = \mathcal{B}(\mathcal{X}) / \sim_{\delta}$ where δ is the volume of the symmetric difference and \sim_{δ} the equivalent relation $A \sim_{\delta} B$ iif $\delta(A, B) = 0$ i.e. A and B are equal except on a λ -negligible set.
- We show that (\mathcal{B}, δ) is a Polish space (separable completely metrizable topological space). (\mathcal{B}, δ) is a metric space so we just need separability and completeness. Separability holds as "it's a subspace of $L_2(\mathcal{X})$ " and we show that it's closed.
- We use a Proposition from Ziegel, Ginsbourger et Dümbgen 2022,

Proposition

Let \mathcal{B} be a Polish space, H a separable Hilbert space, T a measurable and injective mapping from \mathcal{B} to H, and $\varphi \in \Phi_{\infty}^+$. Then, the kernel k on \mathcal{B} defined by

$$k\left(\gamma,\gamma'
ight):=arphi\left(\left\|T(\gamma)-T\left(\gamma'
ight)
ight\|_{H}^{2}
ight),\quad\gamma,\gamma'\in\mathcal{B}$$

is integrally strictly positive definite with respect to $\mathcal{M}(\mathcal{B})$ (which implies that it is characteristic).

with $H = L_2(\mathcal{X})$, $\varphi = \exp(-\frac{\cdot}{2\sigma^2})$ and T defined by $T(\gamma) := x \mapsto \mathbb{1}_{\gamma}(x)$ for any $\gamma \in \mathcal{B}$ so that $\|T(\gamma) - T(\gamma')\|_{H}^{2} = \lambda(\gamma \Delta \gamma')$.

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	○○○●	000000	O	00
HSIC-ANO	VA on sets, es	stimation			

• $H_{set}(U_l, \Gamma) := HSIC_{k_l, k_{set}}(U_l, \Gamma) = \mathbb{E}\left[(k_l(U_l, U_l') - 1)k_{set}(\Gamma, \Gamma')\right]$

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	○○○●	000000	O	00
HSIC-ANO	VA on sets. e	stimation			

•
$$H_{set}(U_l, \Gamma) := HSIC_{k_l, k_{set}}(U_l, \Gamma) = \mathbb{E}\left[(k_l(U_l, U_l') - 1)k_{set}(\Gamma, \Gamma')\right]$$

•
$$\widehat{H_{set}}(U_l,\Gamma) = \frac{2}{n(n-1)} \sum_{i< j}^n \left(k_l \left(U_l^{(i)}, U_l^{(j)}\right) - 1\right) k_{set} \left(\Gamma^{(i)}, \Gamma^{(j)}\right)$$

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	○○○●	000000	O	00
HSIC-ANO	VA on sets e	stimation			

HSIC-ANOVA on sets, estimation

•
$$H_{set}(U_l, \Gamma) := HSIC_{k_l, k_{set}}(U_l, \Gamma) = \mathbb{E}\left[(k_l(U_l, U_l') - 1)k_{set}(\Gamma, \Gamma')\right]$$

•
$$\widehat{H_{set}}(U_l, \Gamma) = \frac{2}{n(n-1)} \sum_{i < j}^n \left(k_l \left(U_l^{(i)}, U_l^{(j)} \right) - 1 \right) k_{set} \left(\Gamma^{(i)}, \Gamma^{(j)} \right)$$

•
$$\widehat{k_{set}}(\Gamma^{(i)},\Gamma^{(j)}) = \exp(-\frac{\lambda(\mathcal{X})}{2\sigma^2} \frac{1}{m} \sum_{k=1}^m \mathbb{1}_{\Gamma^{(i)}\Delta\Gamma^{(j)}}(X^{(k)}_{i,j})) \rightarrow n(n-1)m \text{ tests of } X \in \Gamma$$

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
	000	○○○●	000000	O	00
HSIC-ANC)V/A on sets e	stimation			

estimation 115 vn ULL SELS,

•
$$H_{set}(U_l, \Gamma) := HSIC_{k_l, k_{set}}(U_l, \Gamma) = \mathbb{E}\left[(k_l(U_l, U_l') - 1)k_{set}(\Gamma, \Gamma')\right]$$

•
$$\widehat{H_{set}}(U_l, \Gamma) = \frac{2}{n(n-1)} \sum_{i < j}^n \left(k_l \left(U_l^{(i)}, U_l^{(j)} \right) - 1 \right) k_{set} \left(\Gamma^{(i)}, \Gamma^{(j)} \right)$$

•
$$\widehat{k_{set}}(\Gamma^{(i)},\Gamma^{(j)}) = \exp(-\frac{\lambda(\mathcal{X})}{2\sigma^2} \frac{1}{m} \sum_{k=1}^m \mathbb{1}_{\Gamma^{(i)}\Delta\Gamma^{(j)}}(X_{i,j}^{(k)})) \rightarrow n(n-1)m \text{ tests of } X \in \Gamma$$

•
$$\widehat{k_{set}}(\Gamma^{(i)},\Gamma^{(j)}) = \exp(-\frac{\lambda(\mathcal{X})}{2\sigma^2}\frac{1}{m}\sum_{k=1}^m \mathbb{1}_{\Gamma^{(i)}\Delta\Gamma^{(j)}}(X^{(k)}))$$

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	○○○●	000000	O	00
HSIC-ANO	VA on sets e	stimation			

estimation 110 vn ULL SELS,

•
$$\mathsf{H}_{set}(U_l, \Gamma) := \mathsf{HSIC}_{k_l, k_{set}}(U_l, \Gamma) = \mathbb{E}\left[(k_l(U_l, U_l') - 1)k_{set}(\Gamma, \Gamma')\right]$$

•
$$\widehat{H_{set}}(U_l, \Gamma) = \frac{2}{n(n-1)} \sum_{i < j}^n \left(k_l \left(U_l^{(i)}, U_l^{(j)} \right) - 1 \right) k_{set} \left(\Gamma^{(i)}, \Gamma^{(j)} \right)$$

•
$$\widehat{k_{set}}(\Gamma^{(i)},\Gamma^{(j)}) = \exp(-\frac{\lambda(\mathcal{X})}{2\sigma^2} \frac{1}{m} \sum_{k=1}^m \mathbb{1}_{\Gamma^{(i)}\Delta\Gamma^{(j)}}(X^{(k)}_{i,j})) \rightarrow n(n-1)m \text{ tests of } X \in \Gamma$$

•
$$\widehat{k_{set}}(\Gamma^{(i)},\Gamma^{(j)}) = \exp(-\frac{\lambda(\mathcal{X})}{2\sigma^2}\frac{1}{m}\sum_{k=1}^m \mathbb{1}_{\Gamma^{(i)}\Delta\Gamma^{(j)}}(X^{(k)}))$$

•
$$\widehat{\widehat{\mathsf{H}_{set}}}\left(U_{l}, \Gamma\right) = \frac{2}{n(n-1)} \sum_{i < j}^{n} \left(k_{l}\left(U_{l}^{(i)}, U_{l}^{(j)}\right) - 1\right) \exp\left(-\frac{\lambda(\mathcal{X})}{2\sigma^{2}} \frac{1}{m} \sum_{k=1}^{m} \mathbb{1}_{\Gamma^{(i)} \Delta \Gamma^{(j)}}(X^{(k)})\right)$$

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	○○○●	000000	O	00
HSIC-ANO	N/A on sets e	stimation			

•
$$H_{set}(U_{l}, \Gamma) := HSIC_{k_{l}, k_{set}}(U_{l}, \Gamma) = \mathbb{E}\left[\left(k_{l}(U_{l}, U_{l}') - 1\right)k_{set}(\Gamma, \Gamma')\right]$$

• $\widehat{H_{set}}(U_{l}, \Gamma) = \frac{2}{n(n-1)}\sum_{i < j}^{n}\left(k_{l}\left(U_{l}^{(i)}, U_{l}^{(j)}\right) - 1\right)k_{set}\left(\Gamma^{(i)}, \Gamma^{(j)}\right)$
• $\widehat{k_{set}}(\Gamma^{(i)}, \Gamma^{(j)}) = \exp\left(-\frac{\lambda(\mathcal{X})}{2\sigma^{2}}\frac{1}{m}\sum_{k=1}^{m}\mathbb{1}_{\Gamma^{(i)}\Delta\Gamma^{(j)}}(X_{i,j}^{(k)})\right) \rightarrow n(n-1)m \text{ tests of } X \in \Gamma$
• $\widehat{k_{set}}(\Gamma^{(i)}, \Gamma^{(j)}) = \exp\left(-\frac{\lambda(\mathcal{X})}{2\sigma^{2}}\frac{1}{m}\sum_{k=1}^{m}\mathbb{1}_{\Gamma^{(i)}\Delta\Gamma^{(j)}}(X^{(k)})\right)$
• $\widehat{H_{set}}(U_{l}, \Gamma) = \frac{2}{n(n-1)}\sum_{i < j}^{n}\left(k_{l}\left(U_{l}^{(i)}, U_{l}^{(j)}\right) - 1\right)\exp\left(-\frac{\lambda(\mathcal{X})}{2\sigma^{2}}\frac{1}{m}\sum_{k=1}^{m}\mathbb{1}_{\Gamma^{(i)}\Delta\Gamma^{(j)}}(X^{(k)})\right)$

Proposition

The quadratic risk of the nested estimator $\widehat{\widehat{H_{set}}}$ verifies :

$$\mathbb{E}\left(\widehat{\widehat{\mathsf{H}_{set}}}\left(U_{l},\Gamma\right)-\mathsf{H}_{set}(U_{l},\Gamma)\right)^{2}\leq 2\left(\frac{2\sigma_{1}^{2}}{n(n-1)}+\frac{4(n-2)\sigma_{2}^{2}}{n(n-1)}+\frac{L^{2}\sigma_{3}^{2}}{m}\right).$$

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	○○○●	000000	O	00
HSIC-ANO	N/A on sets e	stimation			

•
$$H_{set}(U_{l}, \Gamma) := HSIC_{k_{l}, k_{set}}(U_{l}, \Gamma) = \mathbb{E}\left[(k_{l}(U_{l}, U_{l}') - 1)k_{set}(\Gamma, \Gamma')\right]$$

• $\widehat{H_{set}}(U_{l}, \Gamma) = \frac{2}{n(n-1)} \sum_{i < j}^{n} \left(k_{l}\left(U_{l}^{(i)}, U_{l}^{(j)}\right) - 1\right)k_{set}\left(\Gamma^{(i)}, \Gamma^{(j)}\right)$
• $\widehat{k_{set}}(\Gamma^{(i)}, \Gamma^{(j)}) = \exp\left(-\frac{\lambda(\mathcal{X})}{2\sigma^{2}} \frac{1}{m} \sum_{k=1}^{m} \mathbb{1}_{\Gamma^{(i)}\Delta\Gamma^{(j)}}(X_{i,j}^{(k)})\right) \rightarrow n(n-1)m \text{ tests of } X \in \Gamma$
• $\widehat{k_{set}}(\Gamma^{(i)}, \Gamma^{(j)}) = \exp\left(-\frac{\lambda(\mathcal{X})}{2\sigma^{2}} \frac{1}{m} \sum_{k=1}^{m} \mathbb{1}_{\Gamma^{(i)}\Delta\Gamma^{(j)}}(X^{(k)})\right)$
• $\widehat{H_{set}}(U_{l}, \Gamma) = \frac{2}{n(n-1)} \sum_{i < j}^{n} \left(k_{l}\left(U_{l}^{(i)}, U_{l}^{(j)}\right) - 1\right) \exp\left(-\frac{\lambda(\mathcal{X})}{2\sigma^{2}} \frac{1}{m} \sum_{k=1}^{m} \mathbb{1}_{\Gamma^{(i)}\Delta\Gamma^{(j)}}(X^{(k)})\right)$

Proposition

The quadratic risk of the nested estimator $\widehat{\widehat{H_{set}}}$ verifies :

$$\mathbb{E}\left(\widehat{\widehat{\mathsf{H}_{set}}}\left(U_{l},\Gamma\right)-\mathsf{H}_{set}\left(U_{l},\Gamma\right)\right)^{2} \leq 2\left(\frac{2\sigma_{1}^{2}}{n(n-1)}+\frac{4(n-2)\sigma_{2}^{2}}{n(n-1)}+\frac{L^{2}\sigma_{3}^{2}}{m}\right).$$

We can now compute $S_{i}^{\widehat{H_{set}}}$ or $S_{T_i}^{\widehat{H_{set}}}$ to perform SA on set-valued outputs.

Introduction 00000	Kernel-based SA 000	Kernel-based SA on sets 0000	Numerical tests ●○○○○○	Outlook O	References
Table of Co	ontents				

Kernel-based Sensitivity Analysis

- Distribution embedding into a RKHS
- From a distance between distributions to sensitivity indices

2 Kernel-based Sensitivity Analysis on sets

- A kernel between sets
- HSIC ANOVA indices on sets, Estimation

3 Numerical tests

- Toy excursion set
- Pollutant concentration maps

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	0000		O	00
Toy functio	on 1				

From El-Amri et al. 2021,

$$\forall x, u \in [-5,5]^2 \times [-5,5]^3 \ g(x_1, x_2, u_1, u_2, u_3) = -x_1^2 + 5x_2 - u_1 + u_2^2 - 1 = -x_1^2 + 5x_2 - u_1 + x_2^2 + 1 = -x_1^2 + 5x_2 - u_1 + x_2^2 + 1 = -x_1^2 + 5x_2 - u_1 + x_2^2 + 1 = -x_1^2 + 5x_2 - u_1 + x_2^2 + 1 = -x_1^2 + 5x_2 - u_1 + x_2^2 + 1 = -x_1^2 + 5x_2 - u_1 + x_2^2 + 1 = -x_1^2 + 5x_2 - u_1 + x_2^2 +$$

Figure – Estimation of the p-values, $\hat{S}_i^{H_{set}}$ and $\hat{S}_{T_i}^{H_{set}}$ for the excursion set defined by the constraint $g \leq 0$ computed for 5 input kernels with n = 100, m = 100 and repeated 20 times

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	0000		O	00
Tay funct	ion 1 aug drati	- rick			

loy function 1, quadratic risk

Proposition

The quadratic risk of the nested estimator $\widehat{\widehat{H_{set}}}$ verifies :

$$\mathbb{E}\left(\widehat{\widehat{\mathsf{H}_{set}}}\left(U_{l},\Gamma\right)-\mathsf{H}_{set}(U_{l},\Gamma)\right)^{2} \leq 2\left(\frac{2\sigma_{1}^{2}}{n(n-1)}+\frac{4(n-2)\sigma_{2}^{2}}{n(n-1)}+\frac{L^{2}\sigma_{3}^{2}}{m}\right).$$

Figure – Evolution of $\mathcal{R}(\widehat{\widehat{H_{set}}}(U_1,\Gamma))$ and of the associated upper bounds for the excursion set of the constraint $g\leq 0$

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	0000	000000	0	00

Pollutant concentration maps : Maps of Sobol indices

Figure – Maps of the sobol indices of pollutant dispersion (Mathis Pasquier)

Interpretation

$$S_{I_s} \gg S_{x_s} \approx S_{y_s} \approx S_{ heta} \gg S_{U_{\infty}}$$

Introducti 00000	ion	Kernel-based SA	Kernel-ba 0000	sed SA on sets	Numerical tests ○○○○●○	Outlook O	References 00
IZ.	1.1		n				

Kernel-based SA on pollutant concentration maps

Sobol map interpretation : $S_{l_s} \gg S_{x_s} \approx S_{y_s} \approx S_{\theta} \gg S_{U_{\infty}}$. $\forall (x, y) \in [5, 15] \times [1, 10], g(x, y, U)$ is the pollutant concentration at the point (x, y) for a given uncertain parameter U. What is the set-valued output?

• Test 1 : $\Gamma_U = \{(x, y) \in [5, 15] \times [1, 10], g(x, y, U) \ge C_{seuil}\}$. Cseuil to choose (toxicity threshold).

	θ	U_{∞}	Xs	y _s	ls
P-value	6.6.10-4	0.11	0	0	0
$S_i^{H_{set}}$	0.069	0.016	0.25	0.15	0.48

• Test 2 : $\Gamma_U = \{(x, y, z) \in [5, 15] \times [1, 10] \times [C_{min}, C_{max}], z \le g(x, y, U)\}$

	θ	U_{∞}	Xs	y _s	ls
P-value	6.6.10 ⁻³	0.77	0.026	0.010	0
$S_i^{H_{set}}$	0.11	0.0081	0.20	0.17	0.50

In both cases we obtain :

$$S_{I_s} > S_{x_s} > S_{y_s} > S_{ heta} > S_{U_\infty}$$

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	0000	00000	0	00

Kernel-based SA on pollutant concentration maps : subspace

 $\Gamma_{\textit{U}} = \{(x, y, \textit{C}) \in [7, 9] \times [4, 5] \times [\textit{C}_{\textit{min}}, \textit{C}_{\textit{max}}], \textit{C} \leq g(x, y, \textit{U})\}$

	θ	U_{∞}	Xs	y _s	ls
P-value	0	0.002	0	0	0.03
$S_i^{H_{set}}$	0.59	0.09	0.14	0.13	0.04

Introduction	Kernel-based SA	Kernel-based SA on sets	Numerical tests	Outlook	References
00000	000	0000		●	00
Outlook of	the thesis				

- Does this work in high dimensional space \mathcal{X} ?
 - Very small volumes ? \rightarrow importance sampling ?
 - If we know that the "effective" dimension d' of Γ_U is small, can we still conduct the sensitivity analysis on \mathcal{X} or should we reduce the dimension on the x before?
- How / where to use a sensitivity analysis on the U (and on the x) inside a robust optimization methodology ?

optimization with uncertainties arXiv : 2103.05706 [stat.ML]. Balança, Paul et Erick Herbin (jan. 2012). "A set-indexed Ornstein-Uhlenbeck process". In : Electronic Communications in Probability 17. none. doi : 10.1214/ecp.v17-1903. url: https://doi.org/10.1214%2Fecp.v17-1903. Cousin, Alexis (oct. 2021). "Chance constraint optimization of a complex system : Application to the design of a floating offshore wind turbine". Theses. Institut Polytechnique de Paris. url : https://tel.archives-ouvertes.fr/tel-03500604. daVeiga, Sébastien (jan. 2021). "Kernel-based ANOVA decomposition and Shapley effects - Application to global sensitivity analysis" working paper or preprint. url: https://hal.archives-ouvertes.fr/hal-03108628. Fellmann, Noé et al. (mai 2023). "Kernel-based sensivity analysis for (excursion) sets" working paper or preprint. url : https://hal-ifp.archives-ouvertes.fr/hal-04094561. Fort, Jean-Claude, Thierry Klein et Agnès Lagnoux (jan. 2021). "Global Sensitivity Analysis and Wasserstein Spaces". In : SIAM/ASA Journal on Uncertainty Quantification 9.2. Publisher : Society for Industrial and Applied Mathematics, p. 880-921. doi : 10.1137/20M1354957. url : https://epubs.siam.org/doi/abs/10.1137/20M1354957. Ciroquo - Axe 3 Kernel-based Sensitivity Analysis on (excursion) sets 25 may 2023

El-Amri, Reda et al. (2021). A sampling criterion for constrained Bayesian

 Gretton, Arthur et al. (2006). "A Kernel Method for the Two-Sample-Problem". In: Advances in Neural Information Processing Systems. T. 19. MIT Press. url: https://proceedings.neurips.cc/paper/2006/hash/ e9fb2eda3d9c55a0d89c98d6c54b5b3e-Abstract.html.
 Spagnol, Adrien (juill. 2020). "Kernel-based sensitivity indices for high-dimensional optimization problems". Theses. Université de Lyon. url:

https://tel.archives-ouvertes.fr/tel-03173192.

Ziegel, Johanna, David Ginsbourger et Lutz Dümbgen (2022). Characteristic kernels on Hilbert spaces, Banach spaces, and on sets of measures. arXiv : 2206.07588 [stat.ML].