Sensitivity analysis for set-valued models. Application to pollutant concentration maps

Thesis: Sensitivity analysis for constrained robust optimization

Noé Fellmann Céline Helbert & Christophette Blanchet (ECL) Adrien Spagnol & Delphine Sinoquet (IFPEN)

École Centrale de Lyon & IFP Énergie nouvelles

Rencontres MEXICO, December 2023

Pointwise SA on maps

SA with random set theory

Universal indices for sets

HSIC for sets

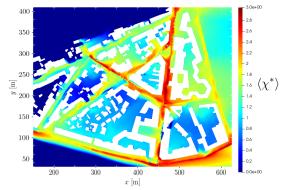
Comparison and conclusion

Model of pollutant concentration maps [M. Pasquier]

Input $oldsymbol{U} = (heta, U_\infty, oldsymbol{q}, eta,
u_{\textit{max}})$ with,

- Wind direction $\theta \sim \mathcal{N}_{[5,10]}(0.7, 0.5^2)$ [rad]
- \bullet Wind speed $\mathit{U}_{\infty} \sim \mathcal{N}_{[-0.35;1.75]}(8,2)$ [m/s]
- Traffic volume $q \sim \mathcal{SN}_{[100;500]}(450,100,-3)$ [vehicle/h]
- Proportion of diesel and petrol engine $eta \sim \mathcal{U}([0,1])$ [-]
- Speed limit $\nu_{\mathsf{max}} \sim \mathcal{U}([30; 50])$ [km/h]

Output : $(x,y) \mapsto \Phi_{U}(x,y)$ a pollutant concentration map



Pointwise SA on maps SA with random set theory Universal indices for sets HSIC for sets Comparison and conclusion 000000 000000 000000 000000

Sensitivity Analysis of map-valued models

Map-valued model :

 $\Phi: \boldsymbol{U} \mapsto \Phi_{\boldsymbol{U}}$

where

$$\Phi_{\boldsymbol{U}}:(x,y)\mapsto\Phi_{\boldsymbol{U}}(x,y)\in\mathbb{R}$$

Goal : Quantify the effect of the inputs \boldsymbol{U} on the spatial output $\Phi_{\boldsymbol{U}}$

3 / 29

Pointwise SA on maps SA with random set theory Universal indices for sets HSIC for sets Comparison and conclusion 000000 000000 000000 000000

Sensitivity Analysis of map-valued models

Map-valued model :

 $\Phi: \boldsymbol{U} \mapsto \Phi_{\boldsymbol{U}}$

where

$$\Phi_{\boldsymbol{U}}:(x,y)\mapsto \Phi_{\boldsymbol{U}}(x,y)\in\mathbb{R}$$

Goal : Quantify the effect of the inputs \boldsymbol{U} on the spatial output $\Phi_{\boldsymbol{U}}$

Sensitivity analysis context

$$(U_1,...,U_d)\stackrel{f}{\mapsto} Y=f(U_1,...,U_d)$$

How can the uncertainty of Y be divided and allocated to the uncertainty of the inputs X_i ?

- Sobol indices : $S_i = \frac{\operatorname{Var} \mathbb{E}(Y|U_i)}{\operatorname{Var} Y}$
- Dependence measures : $S_i = ||\mathbb{P}_{(U_i, Y)} \mathbb{P}_{U_i} \otimes \mathbb{P}_Y||$

Screening : $U_1, ..., U_k$ are influential and $U_{k+1}, ...U_d$ are not influential Ranking : $U_1 \prec ... \prec U_d$

3 / 29

Pointwise SA on maps	SA with random set theory	Universal indices for sets	HSIC for sets	Comparison and conclusion
Table of Conte	ents			

Pointwise Sensitivity Analysis of pollutant concentration maps

Sensitivity analysis for sets based on random set theory

3 Sensitivity analysis for sets using universal indices

Sensitivity Analysis for sets with kernel-based indices

Comparison between the indices and conclusion

Pointwise SA on maps 000000	SA with random set theory	Universal indices for sets	HSIC for sets	Comparison and conclusion
Table of Conte	ents			

Pointwise Sensitivity Analysis of pollutant concentration maps

2 Sensitivity analysis for sets based on random set theory

Sensitivity analysis for sets using universal indices

Sensitivity Analysis for sets with kernel-based indices

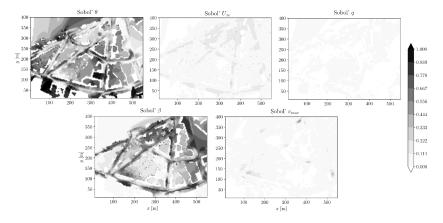
Comparison between the indices and conclusion

Pointwise SA on maps SA with random set theory Universal indices for sets HSIC for sets Comparison and conclusion 000000 000000 000000 000000 000000

Sobol indices maps [M. Pasquier]

Sobol indices at the position (x_1, x_2) :

 $S_i(x_1, x_2) = \frac{\operatorname{Var}[\mathbb{E}[\Phi_U(x_1, x_2)|U_i]]}{\operatorname{Var}[\Phi_U(x_1, x_2)]}.$



SA with random set theory 000000

HSIC for sets

Comparison and conclusion

Generalized Sobol indices [M. Pasquier]

Generalized Sobol' indices (Gamboa, Janon et al. 2013) :

$$S_{i}^{\text{gen}} := \sum_{j=1}^{m} w_{j} S_{i}(x_{1}^{(j)}, x_{2}^{(j)}) \quad \text{with} \qquad w_{j} = \frac{\text{Var}[\Phi_{\boldsymbol{U}}(x_{1}^{(j)}, x_{2}^{(j)})]}{\sum_{k=1}^{m} \text{Var}[\Phi_{\boldsymbol{U}}(x_{1}^{(k)}, x_{2}^{(k)})]}.$$

Universal indices for sets

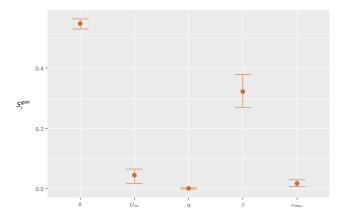
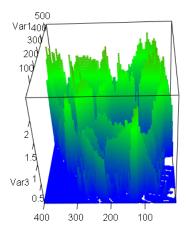


Figure – Estimated generalised first-order Sobol' indices with 2¹² model evaluations.

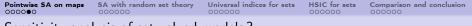
Pointwise SA on maps

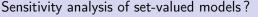
From map-valued model to set-valued model

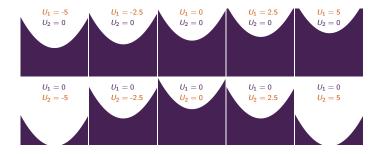
$$\begin{array}{ccc} \mathcal{U} & \longrightarrow & \mathcal{L}(\mathcal{X}) \\ \Psi: & \boldsymbol{u} & \mapsto & \Gamma_{\boldsymbol{u}} = \{(x_1, x_2, c) \in \mathcal{D} \times [0, C_{max}], \ c \leq \Phi_{\boldsymbol{u}}(x_1, x_2)\} \end{array}$$



7 / 29







How to do sensitivity analysis of set-valued models?

How to do sensitivity analysis of set-valued models?

• Conduct sensitivity analysis on the volume : $U \rightarrow \lambda(\Gamma_U)$

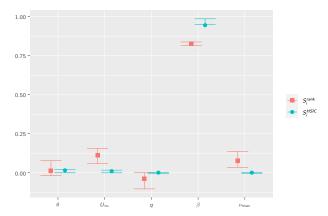


Figure – Estimation of Sobol indices (rank-method) and HSIC-based indices (rbf_anova kernel) of the volume of Γ_U . 1000 model evaluations are used and confidence interval are estimated with 100 bootstrap resamples.

How to do sensitivity analysis of set-valued models?

• Conduct sensitivity analysis on the volume $: U \to \lambda(\Gamma_U)$

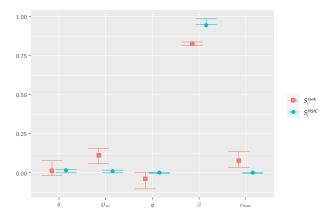


Figure – Estimation of Sobol indices (rank-method) and HSIC-based indices (rbf_anova kernel) of the volume of Γ_U . 1000 model evaluations are used and confidence interval are estimated with 100 bootstrap resamples.

Pointwise SA on maps	SA with random set theory ●00000	Universal indices for sets	HSIC for sets	Comparison and conclusion
Table of Conte	ents			

Pointwise Sensitivity Analysis of pollutant concentration maps

Sensitivity analysis for sets based on random set theory

Sensitivity analysis for sets using universal indices

Sensitivity Analysis for sets with kernel-based indices

Comparison between the indices and conclusion

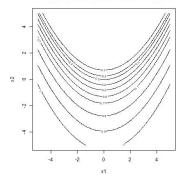
A little bit of random set theory (Molchanov 2005)

Sobol indices on sets? Requires an expectation and a variance of random sets

Vorob'ev expectation

$$\mathbb{E}^{V}[\Gamma] = \{ x \in \mathcal{X}, \mathbb{P}(x \in \Gamma) \ge \alpha^* \} = Q_{\alpha^*} \text{ with } \mathbb{E}[\lambda(\Gamma)] = \lambda(Q_{\alpha^*})$$
(1)

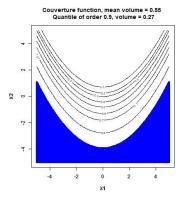
Couverture function, mean volume = 0.545



A little bit of random set theory (Molchanov 2005)

Sobol indices on sets? Requires an expectation and a variance of random sets

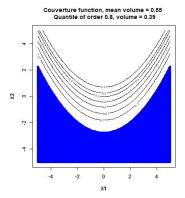
$$\mathbb{E}^{V}[\Gamma] = \{ x \in \mathcal{X}, \mathbb{P}(x \in \Gamma) \ge \alpha^* \} = Q_{\alpha^*} \text{ with } \mathbb{E}[\lambda(\Gamma)] = \lambda(Q_{\alpha^*})$$
(1)



A little bit of random set theory (Molchanov 2005)

Sobol indices on sets? Requires an expectation and a variance of random sets

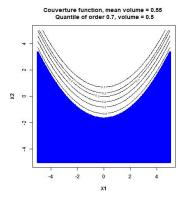
$$\mathbb{E}^{V}[\Gamma] = \{ x \in \mathcal{X}, \mathbb{P}(x \in \Gamma) \ge \alpha^* \} = Q_{\alpha^*} \text{ with } \mathbb{E}[\lambda(\Gamma)] = \lambda(Q_{\alpha^*})$$
(1)



A little bit of random set theory (Molchanov 2005)

Sobol indices on sets? Requires an expectation and a variance of random sets

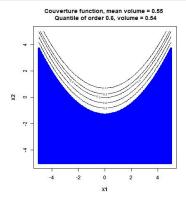
$$\mathbb{E}^{V}[\Gamma] = \{ x \in \mathcal{X}, \mathbb{P}(x \in \Gamma) \ge \alpha^* \} = Q_{\alpha^*} \text{ with } \mathbb{E}[\lambda(\Gamma)] = \lambda(Q_{\alpha^*})$$
(1)



A little bit of random set theory (Molchanov 2005)

Sobol indices on sets? Requires an expectation and a variance of random sets

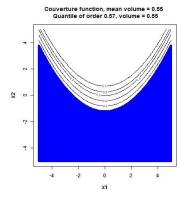
$$\mathbb{E}^{V}[\Gamma] = \{ x \in \mathcal{X}, \mathbb{P}(x \in \Gamma) \ge \alpha^* \} = Q_{\alpha^*} \text{ with } \mathbb{E}[\lambda(\Gamma)] = \lambda(Q_{\alpha^*})$$
(1)



A little bit of random set theory (Molchanov 2005)

Sobol indices on sets? Requires an expectation and a variance of random sets

$$\mathbb{E}^{V}[\Gamma] = \{ x \in \mathcal{X}, \mathbb{P}(x \in \Gamma) \ge \alpha^* \} = Q_{\alpha^*} \text{ with } \mathbb{E}[\lambda(\Gamma)] = \lambda(Q_{\alpha^*})$$
(1)



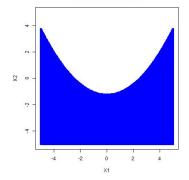
Pointwise SA on maps SA with random set theory Universal indices for sets HSIC for sets Comparison and conclusion 000000 (Molehamory 2005)

A little bit of random set theory (Molchanov 2005)

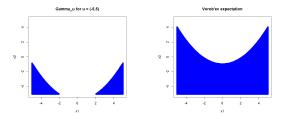
Sobol indices on sets? Requires an expectation and a variance of random sets

Vorob'ev expectation

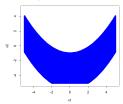
$$\mathbb{E}^{V}[\Gamma] = \{ x \in \mathcal{X}, \mathbb{P}(x \in \Gamma) \ge \alpha^* \} = Q_{\alpha^*} \text{ with } \mathbb{E}[\lambda(\Gamma)] = \lambda(Q_{\alpha^*})$$
(1)



 $\operatorname{Var}^{V}(\Gamma) = \mathbb{E}[\lambda(\Gamma \Delta \mathbb{E}^{V}[\Gamma])], \text{ with } A\Delta B = A \bigcup B - A \bigcap B \text{ the symmetric difference}$



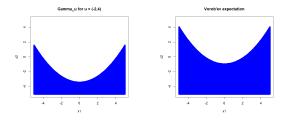
Symmetric difference Volume =46.4



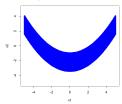
Rencontres MEXICO

Sensitivity analysis for set-valued models

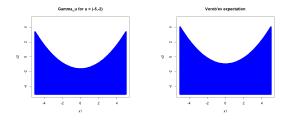
 $\operatorname{Var}^{V}(\Gamma) = \mathbb{E}[\lambda(\Gamma \Delta \mathbb{E}^{V}[\Gamma])], \text{ with } A\Delta B = A \bigcup B - A \bigcap B \text{ the symmetric difference}$



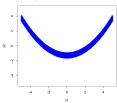
Symmetric difference Volume =24.5



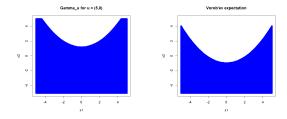
 $\operatorname{Var}^{V}(\Gamma) = \mathbb{E}[\lambda(\Gamma \Delta \mathbb{E}^{V}[\Gamma])], \text{ with } A\Delta B = A \bigcup B - A \bigcap B \text{ the symmetric difference}$



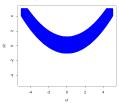
Symmetric difference Volume =6.6



 $\operatorname{Var}^{V}(\Gamma) = \mathbb{E}[\lambda(\Gamma \Delta \mathbb{E}^{V}[\Gamma])], \text{ with } A\Delta B = A \bigcup B - A \bigcap B \text{ the symmetric difference}$



Symmetric difference Volume =20.6



Pointwise SA on maps

SA with random set theory 000●00 Universal indices for sets

HSIC for sets

Comparison and conclusion

Definition of indices based on random set theory

Sobol indices :

$$S_i = 1 - rac{\mathbb{E} \operatorname{Var}[Y|U_i]}{\operatorname{Var} Y}$$

where $Q_{0.5}^{i} = \{ \mathbf{x} \in \mathcal{X}, \mathbb{P}(\mathbf{x} \in \Gamma | U_{i}) \geq 0.5 \}$. "Sobol indices" on random sets :

$$S_{i}^{V} = 1 - rac{\mathbb{E}[\lambda(\Gamma \Delta Q_{0.5}^{i})]}{\mathbb{E}[\lambda(\Gamma \Delta Q_{0.5})]}$$

Proposition

 $0 \leq S_i^V \leq 1$

Pointwise SA on maps	SA with random set theory 0000●0	Universal indices for sets	HSIC for sets	Comparison and conclusion
Estimation				

$$\tilde{S}_{i}^{V} = 1 - \frac{\sum_{j=1}^{n} \hat{\lambda}_{m}(\Gamma^{(j)} \Delta \hat{Q}_{0.5}^{i}(U_{i}^{(j)}))}{\sum_{j=1}^{n} \hat{\lambda}_{m}(\Gamma^{(j)} \Delta \hat{Q}_{0.5})}.$$

where

•
$$\Gamma^{(j)} = \Psi(U^{(j)})$$

• $\Gamma_{I}(U_{i}^{(j)}) = \Psi(U_{i}^{(j)}, U_{-i}^{(j,l)})$
• $\hat{Q}_{0.5}^{i}(U_{i}^{(j)}) := \{x \in \mathcal{X}, \frac{1}{n} \sum_{l=1}^{n} \mathbb{1}_{\Gamma_{I}(U_{i}^{(j)})}(x) \ge 0.5\}$
• $\hat{\lambda}_{m}(A) = \frac{1}{m} \sum_{k=1}^{m} \mathbb{1}_{A}(x^{(l)}).$

 \rightarrow double loop estimation

Pointwise SA on maps	SA with random set theory 00000●	Universal indices for sets	HSIC for sets	Comparison and conclusion
Results				

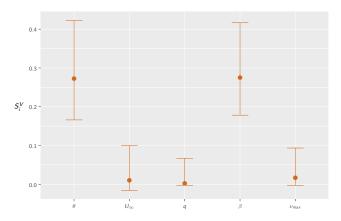


Figure – Estimation of S_V^i for each input with 1024 model evaluations and a confidence interval estimated with 100 bootstrap resamples.

Pointwise SA on maps	SA with random set theory	Universal indices for sets •00000	HSIC for sets	Comparison and conclusion
Table of Conte	ents			

Pointwise Sensitivity Analysis of pollutant concentration maps

2 Sensitivity analysis for sets based on random set theory

3 Sensitivity analysis for sets using universal indices

Sensitivity Analysis for sets with kernel-based indices

Comparison between the indices and conclusion

With $Z = f(U_1, ..., U_p) \in \mathbb{Z}$, the universal sensitivity index with respect to U_i is defined as

$$S_{2, \text{ Univ}}^{i}(T, \mathbb{Q}) := \frac{\int_{\mathcal{A}} \operatorname{Var}\left(\mathbb{E}\left[T_{a}(Z) \mid U_{i}\right]\right) d\mathbb{Q}(a)}{\int_{\mathcal{A}} \operatorname{Var}\left(T_{a}(Z)\right) d\mathbb{Q}(a)},$$
(2)

where (T_a) are tests functions defined by :

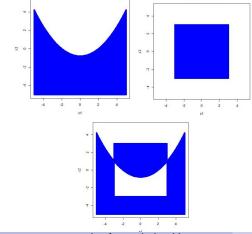
$$\begin{array}{rccc} \mathcal{A} \times \mathcal{Z} & \to & \mathbb{R} \\ (a,z) & \mapsto & T_a(z), \end{array} \tag{3}$$

and \mathcal{A} is some measurable space endowed with a probability measure \mathbb{Q} .

- Generalization of existing indices :
 - Sobol index : $S^{i} = S^{i}_{2}$. Unive (Id, \mathbb{Q}) with Id beeing the indicator function : $T_{a}(z) = z$.
 - Cramér-von Mises index : $T_a(z) = \mathbb{1}_{x \leq a}$, $\mathbb{Q} = \mathbb{P}$ with $\mathcal{A} = \mathcal{X}$.
- Defined for any metric output space

Adaptation of the universal indices to sets

$$S_i^{\text{Univ}}(\gamma, \mathbb{Q}) = \frac{\int_0^1 \operatorname{Var} \mathbb{E} \left[\lambda(\Gamma \Delta \gamma_a) \mid U_i \right] d\mathbb{Q}(a)}{\int_0^1 \operatorname{Var} \left(\lambda(\Gamma \Delta \gamma_a) \right) d\mathbb{Q}(a)} \text{ with } \gamma_a \text{ a square with side length } a$$



Rencontres MEXICO

Sensitivity analysis for set-valued models

Pointwise SA on maps	SA with random set theory	Universal indices for sets	HSIC for sets	Comparison and conclusion
Definition of t	ne indices			

Definition (adaptation of the universal indices from Fort, Klein et Lagnoux 2021)

$$S_i^{\mathsf{Univ}}(\gamma, \mathbb{Q}) = rac{\int_0^1 \mathsf{Var} \mathbb{E} \left[\lambda(\Gamma \Delta \gamma_a) \mid U_i
ight] d\mathbb{Q}(a)}{\int_0^1 \mathsf{Var} \left(\lambda(\Gamma \Delta \gamma_a)
ight) d\mathbb{Q}(a)}$$

where $(\gamma_a)_{a \in [0,1]} \subset \mathcal{X}$ is a collection of test sets parameterised by $a \in [0,1]$ and \mathbb{Q} is a probability distribution on [0,1] to choose.

- Centered balls : $\gamma_a = B(x^0, a)$ with $\mathbb{Q} \sim \mathcal{U}([0, \frac{1}{2}])$
- Centered squares : $\gamma_a = \{x \in [0,1]^3, ||x x^0||_\infty \le a\}$ with $\mathbb{Q} \sim \mathcal{U}([0,\frac{1}{2}])$
- Slices along the i-th dimension : $\gamma_a^i = \{x \in [0,1]^3, x^i \leq a\}$ with $\mathbb{Q} \sim \mathcal{U}([0,1])$
- Vorob'ev quantiles : $\gamma_a = \{x \in [0,1]^3, \mathbb{P}(x \in \Gamma) \ge a\}$ with $\mathbb{Q} \sim \mathcal{N}(\frac{1}{2}, 0.05^2)$

SA with random set theory Universal indices for sets HSIC for sets Comparison and conclusion Pointwise SA on maps 000000

Estimation (rank-based estimation)

The estimator $\widehat{S}_i^{\text{Univ}}$ of S_i^{Univ} is given by the ratio between

$$\begin{split} \widehat{S}_{num} &= \frac{1}{N_a} \sum_{l=1}^{N_a} \left[\frac{1}{n} \sum_{j=1}^n \left(\widehat{\lambda}_m(\Gamma^{(j)} \Delta \gamma_{A_l}) \right) \left(\widehat{\lambda}_m(\Gamma^{(N_i(j))} \Delta \gamma_{a_l}) \right) \right] \\ &- \frac{1}{N_a} \sum_{l=1}^{N_a} \left[\frac{1}{n} \sum_{j=1}^n \left(\widehat{\lambda}_m(\Gamma^{(j)} \Delta \gamma_{a_l}) \right) \right]^2 \end{split}$$

and,

$$\widehat{S}_{den} = \frac{1}{N_a} \sum_{l=1}^{N_a} \left[\frac{1}{n} \sum_{j=1}^n \left(\widehat{\lambda}_m(\Gamma^{(j)} \Delta \gamma_{a_l}) \right)^2 \right] - \frac{1}{N_a} \sum_{l=1}^{N_a} \left[\frac{1}{n} \sum_{j=1}^n \left(\widehat{\lambda}_m(\Gamma^{(j)} \Delta \gamma_{a_l}) \right) \right]^2,$$

where (a_i) is an iid sample of the law \mathbb{Q} and $N_i(j)$ is the index in the sample (U_i^{\prime}) that comes after U_i^j when (U_i^j) is sorted in ascending order (see Gamboa, Gremaud et al. 2022 for details).

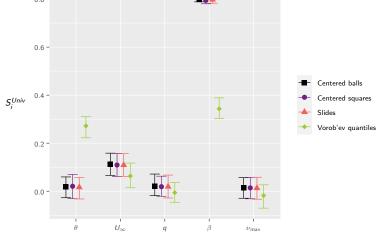


Figure – Estimation of the universal indices S_i^{Univ} for each input and for four different test sets and $N_a = 100$, with 1000 model evaluations. Confidence intervals are obtained with 100 bootstrap samples

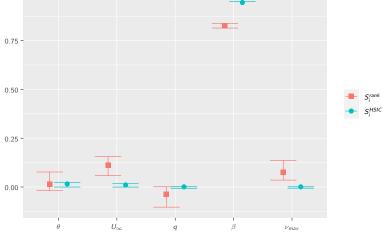


Figure – Estimation of Sobol indices (rank-method) and HSIC-based indices (rbf_anova kernel) of the volume of Γ_U . 1000 model evaluations are used and confidence interval are estimated with 100 bootstrap resamples.

Pointwise SA on maps	SA with random set theory 000000	Universal indices for sets	HSIC for sets ●00000	Comparison and conclusion
Table of Conte	ents			

Pointwise Sensitivity Analysis of pollutant concentration maps

2 Sensitivity analysis for sets based on random set theory

3 Sensitivity analysis for sets using universal indices

Sensitivity Analysis for sets with kernel-based indices

Comparison between the indices and conclusion

Dependence measures : $S_i = ||\mathbb{P}_{(X_i, Y)} - \mathbb{P}_{X_i} \otimes \mathbb{P}_{Y}||$

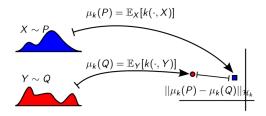


Figure - Kernel mean embedding

with k a (positive definite) kernel $k : (x, x') \in \mathcal{X}^2 \mapsto k(x, x') \in \mathbb{R}$.

Hilbert Schmidt Independence Criterion (HSIC), Gretton et al. 2006

With $K = k_{\mathcal{X}_i} \otimes k_{\mathcal{Y}}$, the HSIC is given by :

$$\mathsf{HSIC}_{\mathcal{K}}(X_i,Y) = ||\mu_{\mathcal{K}}(X_i,Y) - \mu_{k_{\mathcal{X}_i}}(X_i) \otimes \mu_{k_{\mathcal{Y}}}(Y)||^2_{\mathcal{H}_{\mathcal{K}}}$$

When K is characteristic (injectivity of the mean embedding),

 $\text{HSIC}_{\mathcal{K}}(X_i, Y) = 0 \text{ iif } X_i \perp Y \rightarrow \text{ screening.}$

HSIC-ANOVA index [daVeiga 2021]

Assuming that the inputs are independent and that the input kernels are ANOVA,

$$\mathsf{HSIC}(\boldsymbol{X},Y) = \sum_{A \subseteq \{1,...,d\}} \sum_{B \subseteq A} (-1)^{|A| - |B|} \mathsf{HSIC}(\boldsymbol{X}_B,Y).$$

HSIC-ANOVA indices are then defined as :

$$S_i^{\mathsf{HSIC}} := rac{\mathsf{HSIC}(X_i, Y)}{\mathsf{HSIC}(X, Y)},$$

$$S_{T_i}^{\mathsf{HSIC}} := 1 - rac{\mathsf{HSIC}(oldsymbol{x}_{-i},Y)}{\mathsf{HSIC}(oldsymbol{x},Y)}$$

and are suited for ranking (and screening).

• Easy to estimate :

$$\begin{aligned} \mathsf{HSIC}_{k_{\mathcal{X}},k_{\mathcal{Y}}}(X,Y) &= \mathbb{E}[k_{\mathcal{X}}(X,X')k_{\mathcal{Y}}(Y,Y')] \\ &+ \mathbb{E}[k_{\mathcal{X}}(X,X')]\mathbb{E}[k_{\mathcal{Y}}(Y,Y')] \\ &- 2\mathbb{E}[\mathbb{E}[k_{\mathcal{X}}(X,X')|X]\mathbb{E}[k_{\mathcal{Y}}(Y,Y')|Y]]. \end{aligned}$$

• Only requirement : to have kernels on the inputs and on the output

Pointwise SA on maps

SA with random set theory

Universal indices for sets

HSIC for sets 000€00 Comparison and conclusion

HSIC ANOVA indices for sets, definition of the indices

Given an input kernel K_i and an output kernel k_{set} ,

$$HSIC_{K_i \otimes k_{set}}(U_i, \Gamma) = ||\mu_{K_i \otimes k_{set}}(\mathbb{P}_{(U_i, \Gamma)}) - \mu_{K_i \otimes k_{set}}(\mathbb{P}_{U_i} \otimes \mathbb{P}_{\Gamma})||^2_{\mathcal{H}_{K_i \otimes k_{set}}}$$

If $K_i \otimes k_{set}$ is characteristic (injectivity of the mean embedding), then,

$$HSIC_{\kappa_i \otimes \kappa_{set}}(U_i, \Gamma) = 0$$
 iif $U_i \perp \Gamma$.

Proposition (Fellmann et al. 2023)

The kernel k_{set} defined by :

$$k_{set}(\gamma_1, \gamma_2) = \exp\left(-\frac{\lambda(\gamma_1 \Delta \gamma_2)}{2\sigma^2}\right)$$

is characteristic.

$$S_i^{\mathsf{H}_{set}} := \frac{\mathsf{HSIC}^{ANOVA}(U_i, \Gamma)}{\mathsf{HSIC}^{ANOVA}(U, \Gamma)}$$
$$= \frac{\mathbb{E}\left[(K_i(U_i, U_i') - 1)k_{set}(\Gamma, \Gamma')\right]}{\mathbb{E}\left[(K(U, U') - 1)k_{set}(\Gamma, \Gamma')\right]}$$

The indices can be estimated using :

$$\widehat{\widehat{\mathsf{H}_{set}}}\left(U_{i}, \Gamma\right) = \frac{2}{n(n-1)} \sum_{j < l}^{n} \left(\mathsf{K}_{i}\left(U_{i}^{(j)}, U_{i}^{(l)}\right) - 1 \right) \exp\left(-\frac{\lambda(\mathcal{X})}{2\sigma^{2}} \widehat{\lambda}_{m}(\Gamma^{(j)} \Delta \Gamma^{(l)})\right).$$

Input kernels :

- the Sobolev kernel of order 1, $k_{sob}(x, y) = 1 + (x - \frac{1}{2})(y - \frac{1}{2}) + \frac{1}{2}[(x - y)^2 - |x - y| + \frac{1}{6}]$
- the Gaussian kernel, $k_{rbf}(x, y) = e^{-\frac{1}{2} \left(\frac{x-y}{\sigma}\right)^2}$ with $\sigma > 0$,
- the Laplace kernel, $k_{exp}(x,y) = e^{-\frac{|x-y|}{h}}$ with h > 0,
- the Matérn 3/2, $k_{3/2}(x,y) = \left(1 + \sqrt{3} \frac{|x-y|}{h}\right) e^{-\sqrt{3} \frac{|x-y|}{h}}$ with h > 0,

• the Matérn 5/2,
$$k_{5/2}(x,y) = \left(1 + \sqrt{5} \frac{|x-y|}{h} + \frac{5}{3} \frac{|x-y|}{h^2}\right) e^{-\sqrt{5} \frac{|x-y|}{h}}$$
 with $h > 0$.

Pointwise SA on maps	SA with random set theory	Universal indices for sets	HSIC for sets 00000●	Comparison and conclusion
Results				

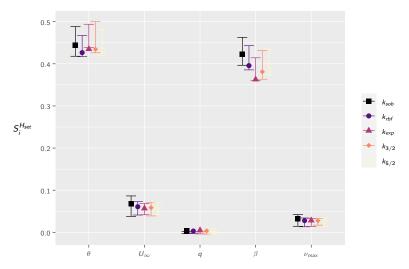


Figure – Estimation of $S_i^{\text{H}_{set}}$ for five input kernels, 1000 model evaluations. Confidence intervals are obtained by bootstrap with 100 resamples

Pointwise SA on maps	SA with random set theory	Universal indices for sets	HSIC for sets	Comparison and conclusion ●00000
Table of Conte	nts			

Pointwise Sensitivity Analysis of pollutant concentration maps

2 Sensitivity analysis for sets based on random set theory

Sensitivity analysis for sets using universal indices

Sensitivity Analysis for sets with kernel-based indices

Comparison between the indices and conclusion

Pointwise SA on maps	SA with random set theory 000000	Universal indices for sets	HSIC for sets	Comparison and conclusion
Comparison				

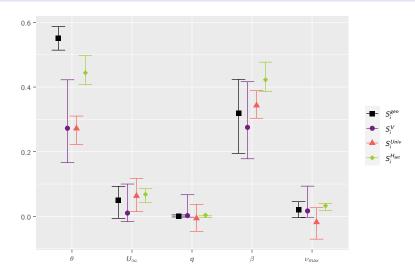
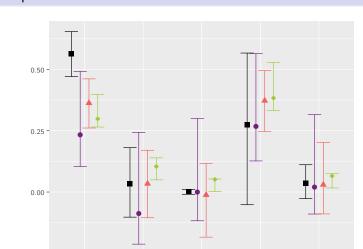


Figure – Comparison of the four indices with a total budget of n = 1000 model evaluations. 100 bootstrap sample are used to estimate confidence intervals

Pointwise SA on maps	SA with random set theory	Universal indices for sets	HSIC for sets	Comparison and conclusion
Comparison				



Ū∞

Figure – Comparison of the four indices with a total budget of n = 100 model evaluations. 100 bootstrap sample are used to estimate confidence intervals

β

 ν_{max}

Rencontres MEXICO

-0.25 -

θ

q

S:gen

 S_i^V S_i^{Univ} $S_i^{H_{set}}$

Pointwise SA on maps	SA with random set theory 000000	Universal indices for sets	HSIC for sets	Comparison and conclusion
c .				

1	am	naricon	and	conc	lucion
1	COIII	parison	and	COLC	IUSIOII
		p			

	Ranking	Screening	Evaluations	Limitations
S _i ^{gen}	🗸 ANOVA	\sim threshold	$\sim (p+1)n$	✗ pointwise in- fluence
S_i^V	✗ no decompo- sition	X no screening method	X n ² (double loop)	✓ no choice to be made
S_i^{Univ}	✓ ANOVA	\sim threshold	\sim <i>n</i> but big confidence in-tervals	X choice of the test sets
S _i ^{H_{set}}	✓ ANOVA	✓ indepen- dence test	✓ n and small confidence in- tervals	∼ choice of kernel✗ Interactions interpretations

- HSIC-based indices seem to be the most efficient except if we are interested in the interactions between the inputs
- Methodology presented for map-valued outputs but can be used for any set-valued outputs

Molchanov, Ilya (2005). Theory of random sets. T. 19. 2. Springer.